The next species to which Mr. Martin requested the attention of the meeting was a Varanus from the Isle of Mindanado, which he regarded as hitherto undescribed.

This Varanus, he observed, appeared to be closely allied to $V a$ ranus chlorostigma, Dum. and Bibr., differing, nevertheless, materially in the character of the scales of the body, and in the distribution of its markings. As in Varanus chlorostigma and Var. bivittatus, the suborbital scales consist of a crescent of plates, broader than long, encircled by small plates, which latter cover the suborbital margin. The nostrils are rounded, and placed on each side of the muzzle rather nearer the apex than in Var. chlorostigma; the teeth are also compressed with sharp edges very minutely dentated; the head is more produced than in Var. chlorostigma, being, in this respect more like that of Var. bivittatus; and the scales are larger, coarser, and more irregular.

For this new Varanus, Mr. Martin proposed the name of Varanus Cumingi.

Varanus Cumingi. Varan. caudâ compressâ, naribus ferè rotundatis et rostri apicem versus positis; lamellis suborbitalibus incequalibus, septem vel octo ceteris quoad magnitudinem prastantibus latissinis, lineamque semilunaren efficientibus; dentibus compressis, acutis, et delicatè serratis; corpore suprà nigro, gultis ocellisque flavis ornato; abdomine aurantiaco.
Hab. apud Insulam Mindanado.

MISCELLANEOUS.

ON THE GENUS SYNGNATHUS.

A translation of Prof. Fries' paper on the genus Syngnathus having appeared in this Journal, we should not be doing justice to that gentleman, were we to omit publishing the following correspondence which has taken place between him and Prof. Wiegmann with reference to a note by the latter, which will be found at p. 100. vol. ii. of the Annals.-Enit.
"'To Prof. Wiegmann.-In the third part of your Journal (Archiv für Naturgeschichte) you endeavour to weaken my statement that ' the specimen which served for the original of Bloch's figure was S. equoreus,' by the assertion that 'the only specimen in Bloch's collection is my S. Ophidion.' I am very sorry that you did not take the trouble to compare Bloch's specimen with the figure, for you would certainly have come to a contrary conclusion. I have never seen Bloch's specimen, yet I still maintain that a S. Ophidion never served for the original of the figure, because no S. Ophidion offers such proportions as those presented by the figure. In no true S. Ophidion can the caudal fin be placed in such relation to the anus; the figure

The next species to which Mr. Martin requested the attention of the meeting was a Varanus from the Isle of Mindanado, which he regarded as hitherto undescribed.

This Varanus, he observed, appeared to be closely allied to $V a$ ranus chlorostigma, Dum. and Bibr., differing, nevertheless, materially in the character of the scales of the body, and in the distribution of its markings. As in Varanus chlorostigma and Var. bivittatus, the suborbital scales consist of a crescent of plates, broader than long, encircled by small plates, which latter cover the suborbital margin. The nostrils are rounded, and placed on each side of the muzzle rather nearer the apex than in Var. chlorostigma; the teeth are also compressed with sharp edges very minutely dentated; the head is more produced than in Var. chlorostigma, being, in this respect more like that of Var. bivittatus; and the scales are larger, coarser, and more irregular.

For this new Varanus, Mr. Martin proposed the name of Varanus Cumingi.

Varanus Cumingi. Varan. caudâ compressâ, naribus ferè rotundatis et rostri apicem versus positis; lamellis suborbitalibus incequalibus, septem vel octo ceteris quoad magnitudinem prastantibus latissinis, lineamque semilunaren efficientibus; dentibus compressis, acutis, et delicatè serratis; corpore suprà nigro, gultis ocellisque flavis ornato; abdomine aurantiaco.
Hab. apud Insulam Mindanado.

MISCELLANEOUS.

ON THE GENUS SYNGNATHUS.

A translation of Prof. Fries' paper on the genus Syngnathus having appeared in this Journal, we should not be doing justice to that gentleman, were we to omit publishing the following correspondence which has taken place between him and Prof. Wiegmann with reference to a note by the latter, which will be found at p. 100. vol. ii. of the Annals.-Enit.
"'To Prof. Wiegmann.-In the third part of your Journal (Archiv für Naturgeschichte) you endeavour to weaken my statement that ' the specimen which served for the original of Bloch's figure was S. equoreus,' by the assertion that 'the only specimen in Bloch's collection is my S. Ophidion.' I am very sorry that you did not take the trouble to compare Bloch's specimen with the figure, for you would certainly have come to a contrary conclusion. I have never seen Bloch's specimen, yet I still maintain that a S. Ophidion never served for the original of the figure, because no S. Ophidion offers such proportions as those presented by the figure. In no true S. Ophidion can the caudal fin be placed in such relation to the anus; the figure

The next species to which Mr. Martin requested the attention of the meeting was a Varanus from the Isle of Mindanado, which he regarded as hitherto undescribed.

This Varanus, he observed, appeared to be closely allied to $V a$ ranus chlorostigma, Dum. and Bibr., differing, nevertheless, materially in the character of the scales of the body, and in the distribution of its markings. As in Varanus chlorostigma and Var. bivittatus, the suborbital scales consist of a crescent of plates, broader than long, encircled by small plates, which latter cover the suborbital margin. The nostrils are rounded, and placed on each side of the muzzle rather nearer the apex than in Var. chlorostigma; the teeth are also compressed with sharp edges very minutely dentated; the head is more produced than in Var. chlorostigma, being, in this respect more like that of Var. bivittatus; and the scales are larger, coarser, and more irregular.

For this new Varanus, Mr. Martin proposed the name of Varanus Cumingi.

Varanus Cumingi. Varan. caudâ compressâ, naribus ferè rotundatis et rostri apicem versus positis; lamellis suborbitalibus incequalibus, septem vel octo ceteris quoad magnitudinem prastantibus latissinis, lineamque semilunaren efficientibus; dentibus compressis, acutis, et delicatè serratis; corpore suprà nigro, gultis ocellisque flavis ornato; abdomine aurantiaco.
Hab. apud Insulam Mindanado.

MISCELLANEOUS.

ON THE GENUS SYNGNATHUS.

A translation of Prof. Fries' paper on the genus Syngnathus having appeared in this Journal, we should not be doing justice to that gentleman, were we to omit publishing the following correspondence which has taken place between him and Prof. Wiegmann with reference to a note by the latter, which will be found at p. 100. vol. ii. of the Annals.-Enit.
"'To Prof. Wiegmann.-In the third part of your Journal (Archiv für Naturgeschichte) you endeavour to weaken my statement that ' the specimen which served for the original of Bloch's figure was S. equoreus,' by the assertion that 'the only specimen in Bloch's collection is my S. Ophidion.' I am very sorry that you did not take the trouble to compare Bloch's specimen with the figure, for you would certainly have come to a contrary conclusion. I have never seen Bloch's specimen, yet I still maintain that a S. Ophidion never served for the original of the figure, because no S. Ophidion offers such proportions as those presented by the figure. In no true S. Ophidion can the caudal fin be placed in such relation to the anus; the figure

The next species to which Mr. Martin requested the attention of the meeting was a Varanus from the Isle of Mindanado, which he regarded as hitherto undescribed.

This Varanus, he observed, appeared to be closely allied to $V a$ ranus chlorostigma, Dum. and Bibr., differing, nevertheless, materially in the character of the scales of the body, and in the distribution of its markings. As in Varanus chlorostigma and Var. bivittatus, the suborbital scales consist of a crescent of plates, broader than long, encircled by small plates, which latter cover the suborbital margin. The nostrils are rounded, and placed on each side of the muzzle rather nearer the apex than in Var. chlorostigma; the teeth are also compressed with sharp edges very minutely dentated; the head is more produced than in Var. chlorostigma, being, in this respect more like that of Var. bivittatus; and the scales are larger, coarser, and more irregular.

For this new Varanus, Mr. Martin proposed the name of Varanus Cumingi.

Varanus Cumingi. Varan. caudâ compressâ, naribus ferè rotundatis et rostri apicem versus positis; lamellis suborbitalibus incequalibus, septem vel octo ceteris quoad magnitudinem prastantibus latissinis, lineamque semilunaren efficientibus; dentibus compressis, acutis, et delicatè serratis; corpore suprà nigro, gultis ocellisque flavis ornato; abdomine aurantiaco.
Hab. apud Insulam Mindanado.

MISCELLANEOUS.

ON THE GENUS SYNGNATHUS.

A translation of Prof. Fries' paper on the genus Syngnathus having appeared in this Journal, we should not be doing justice to that gentleman, were we to omit publishing the following correspondence which has taken place between him and Prof. Wiegmann with reference to a note by the latter, which will be found at p. 100. vol. ii. of the Annals.-Enit.
"'To Prof. Wiegmann.-In the third part of your Journal (Archiv für Naturgeschichte) you endeavour to weaken my statement that ' the specimen which served for the original of Bloch's figure was S. equoreus,' by the assertion that 'the only specimen in Bloch's collection is my S. Ophidion.' I am very sorry that you did not take the trouble to compare Bloch's specimen with the figure, for you would certainly have come to a contrary conclusion. I have never seen Bloch's specimen, yet I still maintain that a S. Ophidion never served for the original of the figure, because no S. Ophidion offers such proportions as those presented by the figure. In no true S. Ophidion can the caudal fin be placed in such relation to the anus; the figure
indicates exactly the proportions which we find in S. equoreus, for no S. Ophidion can become so large or thick, or have any such snout. This may appear but a trifle, and in one respect it is so; but on the other hand, it is of very great importance for the clearing up of the synonomy and all the errors which have thence originated. You will oblige me by correcting this as soon as possible."-J. B. Fries. Stockholm, 21st August.

Note by Prof. Wiegmann.

"At the same time that I fulfil the wish of my respected correspondent, I must state that I certainly did not compare Bloch's figure, whose work I had not at hand, erroneously supposing that the only specimen in his collection had also been figured by him. Hence it seems that Bloch did not distinguish both species."

[^0]Among the various causes which produce barrenness in lands, has been enumerated the presence of magnesia, because it had been observed that the various magnesian soils are sterile. This opinion has begun to lose credit, since Bergmann, who examined the composition of fertile soils, considered magnesia as forming one of their principal constituents.

Prof. Giobert has performed a number of experiments to inquire into the action of native magnesia, which is found in numerous cultivated soils. In the environs of Castellamonte and of Baldissero, this substance is abundantly diffused in the soils cultivated with great success, and which exhibit a vigorous vegetation. There are many districts in Piedmont and elsewhere, where the bi-carbonate of lime and of magnesia is abundant in the cultivated lands, which produce beautiful plants. Giobert concluded from these experiments; 1st, that native carbonated magnesia is not injurious to the various functions of vegetables; 2nd, that on account of the solubility of magnesia in an excess of carbonic acid this earth can exercise an action analogous to that of lime ; 3rd, that a magnesian soil may become fertile when the necessary manure is employed.

From these facts naturally proceeds the conclusion, that if the magnesia was dissolved in an excess of carbonic acid and water, and had entered like the lime into the composition of the sap, it ought to be found in the plants with the potash, lime, oxide of iron, \&c. M. Abbene has ascertained this by the analysis of the ashes of plants which had grown in magnesiferous mixtures. Moreover, he endeavoured to find, by comparative experiments, whether the in-
indicates exactly the proportions which we find in S. equoreus, for no S. Ophidion can become so large or thick, or have any such snout. This may appear but a trifle, and in one respect it is so; but on the other hand, it is of very great importance for the clearing up of the synonomy and all the errors which have thence originated. You will oblige me by correcting this as soon as possible."-J. B. Fries. Stockholm, 21st August.

Note by Prof. Wiegmann.

"At the same time that I fulfil the wish of my respected correspondent, I must state that I certainly did not compare Bloch's figure, whose work I had not at hand, erroneously supposing that the only specimen in his collection had also been figured by him. Hence it seems that Bloch did not distinguish both species."

[^1]Among the various causes which produce barrenness in lands, has been enumerated the presence of magnesia, because it had been observed that the various magnesian soils are sterile. This opinion has begun to lose credit, since Bergmann, who examined the composition of fertile soils, considered magnesia as forming one of their principal constituents.

Prof. Giobert has performed a number of experiments to inquire into the action of native magnesia, which is found in numerous cultivated soils. In the environs of Castellamonte and of Baldissero, this substance is abundantly diffused in the soils cultivated with great success, and which exhibit a vigorous vegetation. There are many districts in Piedmont and elsewhere, where the bi-carbonate of lime and of magnesia is abundant in the cultivated lands, which produce beautiful plants. Giobert concluded from these experiments; 1st, that native carbonated magnesia is not injurious to the various functions of vegetables; 2nd, that on account of the solubility of magnesia in an excess of carbonic acid this earth can exercise an action analogous to that of lime ; 3rd, that a magnesian soil may become fertile when the necessary manure is employed.

From these facts naturally proceeds the conclusion, that if the magnesia was dissolved in an excess of carbonic acid and water, and had entered like the lime into the composition of the sap, it ought to be found in the plants with the potash, lime, oxide of iron, \&c. M. Abbene has ascertained this by the analysis of the ashes of plants which had grown in magnesiferous mixtures. Moreover, he endeavoured to find, by comparative experiments, whether the in-
indicates exactly the proportions which we find in S. equoreus, for no S. Ophidion can become so large or thick, or have any such snout. This may appear but a trifle, and in one respect it is so; but on the other hand, it is of very great importance for the clearing up of the synonomy and all the errors which have thence originated. You will oblige me by correcting this as soon as possible."-J. B. Fries. Stockholm, 21st August.

Note by Prof. Wiegmann.

"At the same time that I fulfil the wish of my respected correspondent, I must state that I certainly did not compare Bloch's figure, whose work I had not at hand, erroneously supposing that the only specimen in his collection had also been figured by him. Hence it seems that Bloch did not distinguish both species."

[^2]Among the various causes which produce barrenness in lands, has been enumerated the presence of magnesia, because it had been observed that the various magnesian soils are sterile. This opinion has begun to lose credit, since Bergmann, who examined the composition of fertile soils, considered magnesia as forming one of their principal constituents.

Prof. Giobert has performed a number of experiments to inquire into the action of native magnesia, which is found in numerous cultivated soils. In the environs of Castellamonte and of Baldissero, this substance is abundantly diffused in the soils cultivated with great success, and which exhibit a vigorous vegetation. There are many districts in Piedmont and elsewhere, where the bi-carbonate of lime and of magnesia is abundant in the cultivated lands, which produce beautiful plants. Giobert concluded from these experiments; 1st, that native carbonated magnesia is not injurious to the various functions of vegetables; 2nd, that on account of the solubility of magnesia in an excess of carbonic acid this earth can exercise an action analogous to that of lime ; 3rd, that a magnesian soil may become fertile when the necessary manure is employed.

From these facts naturally proceeds the conclusion, that if the magnesia was dissolved in an excess of carbonic acid and water, and had entered like the lime into the composition of the sap, it ought to be found in the plants with the potash, lime, oxide of iron, \&c. M. Abbene has ascertained this by the analysis of the ashes of plants which had grown in magnesiferous mixtures. Moreover, he endeavoured to find, by comparative experiments, whether the in-
indicates exactly the proportions which we find in S. equoreus, for no S. Ophidion can become so large or thick, or have any such snout. This may appear but a trifle, and in one respect it is so; but on the other hand, it is of very great importance for the clearing up of the synonomy and all the errors which have thence originated. You will oblige me by correcting this as soon as possible."-J. B. Fries. Stockholm, 21st August.

Note by Prof. Wiegmann.

"At the same time that I fulfil the wish of my respected correspondent, I must state that I certainly did not compare Bloch's figure, whose work I had not at hand, erroneously supposing that the only specimen in his collection had also been figured by him. Hence it seems that Bloch did not distinguish both species."

[^3]Among the various causes which produce barrenness in lands, has been enumerated the presence of magnesia, because it had been observed that the various magnesian soils are sterile. This opinion has begun to lose credit, since Bergmann, who examined the composition of fertile soils, considered magnesia as forming one of their principal constituents.

Prof. Giobert has performed a number of experiments to inquire into the action of native magnesia, which is found in numerous cultivated soils. In the environs of Castellamonte and of Baldissero, this substance is abundantly diffused in the soils cultivated with great success, and which exhibit a vigorous vegetation. There are many districts in Piedmont and elsewhere, where the bi-carbonate of lime and of magnesia is abundant in the cultivated lands, which produce beautiful plants. Giobert concluded from these experiments; 1st, that native carbonated magnesia is not injurious to the various functions of vegetables; 2nd, that on account of the solubility of magnesia in an excess of carbonic acid this earth can exercise an action analogous to that of lime ; 3rd, that a magnesian soil may become fertile when the necessary manure is employed.

From these facts naturally proceeds the conclusion, that if the magnesia was dissolved in an excess of carbonic acid and water, and had entered like the lime into the composition of the sap, it ought to be found in the plants with the potash, lime, oxide of iron, \&c. M. Abbene has ascertained this by the analysis of the ashes of plants which had grown in magnesiferous mixtures. Moreover, he endeavoured to find, by comparative experiments, whether the in-
fluence of magnesia on vegetation is analogous to that of lime. The following are the conclusions he arrives at: 1st, Native magnesia is not only not injurious to germination, vegetation, and fructification of plants, but on the contrary, appears to be favourable to these functions. 2nd, Magnesia, being soluble in an excess of carbonic acid, has on vegetation an action analogous to that of lime; and when a soil contains magnesia not sufficiently carbonated, this defect may be remedied by the addition of manure, which by its decomposition furnishes the necessary quantity of carbonic acid; the amelioration will be much more efficacious if the soil be frequently disturbed, as then the air will better exercise its action. 3rd, When lime and magnesia exist in arable lands, the former is absorbed in preference by the plants on account of its greater affinity for carbonic acid. 4th, In barren magnesian lands, it is not to the magnesia that the sterility must be attributed, but to the cohesive state of their parts, to the want of manure, of clay, or of other composts, to the large quantity of oxide of iron, \&c. 5th, Barren magnesian soils may be rendered fertile by means of calcariferous substances, as rubbish, chalk, ashes, marl, \&c., provided the other conditions be fulfilled.Journal de Pharmacie de Janvier, 1839.

METEOROLOGICAL OBSERVATIONS FOR JANUARY, 1839.

Chiswick.-Jan. 1. Overcast. 2, 3. Cloudy and fine. 4. Rain: clear. 5. Clear and very fine. 6. Overcast : sleet : rain at night, with wind increasing to a hurricane. 7. Boisterous. 8. Clear : slight snow. 9, 10. Frosty. 11. Overcast : rain. 12. Very fine. 13. Cloudy and windy, with slight showers. 14. Rain. 15. Very clear. 16. Fine, but cold. 17, 18. Sharp frost : clear. 19. Stormy and wet: clear at night, with aurora borealis. 20. Fine: rain. 21. Rain. 22. Clear and cold. 23. Overcast and fine. 24. Hazy : fine. 25. Fine. 26. Fine : slight snow. 27. Cloudy and cold. 28. Frosty : slight snow at night. 29. Clear : snow. 30. Sharp frost : slightly overcast : stormy with snow : tempestuous at night. 31. Snowing.

Boston.-Jan. 1. Cloudy. 2. Stormy. 3. Fine: stormy night. 4. Cloudy : rain early A.m. 5. Fine. 6. Fine : snow p.M. 7. Stormy : blew a hurricane all day. 8. Stormy. 9, 10. Fine. 11. Cloudy : rain early A.m. : rain A.m. 12, 13. Cloudy. 14. Fine. 15. Stormy. 16, 17. Fine. 18. Fine : snow p.m. 19. Clondy : rain early A.m. : rain p.m. 20. Cloudy: rain early A.м. 21. Rain. 22. Fine: snow early A.m. 23, 24. Cloudy. 25. Fine : rain p.m. 26. Cloudy : snow early a.m. : snow p.м. ${ }^{2}$. Cloudy : rain a.m. 28. Cloudy. 29. Fine: rain and snow p.m. 30. Fine: rain p.m. 31. Cloudy : large fall of snow early A.m. : more snow in the day, with hail.

Applegarth Manse, Dumfries-shire.-Jan. 1. High wind and sharp showers. 2. Generally clear : occasional showers. 3. Very boisterous. 4. Calmed a little : stormy p.m. 5. Wind strong: snow. 6. Frost and snow : rain p.m. 7. Fearful storm : rain and sleet. 8. More calm : more snow. 9. Frost : snow lying three inches. 10. Thaw : snow melting. 11. Rain moderate : flood. 12. Moderate day: sunshine. 13. Frequent heavy showers. 14. Showery: aurora borealis. 15. Frosty after a boisterous night. 16. Clear frost: wind lulled. 17. Calm and frosty, and sunny. 18. Frost A.M. : rain at night. 19. Temperate: heavy flood. 20. Shower A.m.: still mild. 21. Frost A.m. : increasing p.m. 22. Clear frost : overcast p.m. 23. Frost again: slight thaw P.M. 24. Thaw : a few drops of rain. 25. Fine day, without frost. 26. Fine frosty day. 27. Calm and clear frost. 28. Frost : slight fall of snow. 29. Frost : storm of snow. 30. Frost; snow and high wind. S1. Frost : still snowing: nine inches deep.
fluence of magnesia on vegetation is analogous to that of lime. The following are the conclusions he arrives at: 1st, Native magnesia is not only not injurious to germination, vegetation, and fructification of plants, but on the contrary, appears to be favourable to these functions. 2nd, Magnesia, being soluble in an excess of carbonic acid, has on vegetation an action analogous to that of lime; and when a soil contains magnesia not sufficiently carbonated, this defect may be remedied by the addition of manure, which by its decomposition furnishes the necessary quantity of carbonic acid; the amelioration will be much more efficacious if the soil be frequently disturbed, as then the air will better exercise its action. 3rd, When lime and magnesia exist in arable lands, the former is absorbed in preference by the plants on account of its greater affinity for carbonic acid. 4th, In barren magnesian lands, it is not to the magnesia that the sterility must be attributed, but to the cohesive state of their parts, to the want of manure, of clay, or of other composts, to the large quantity of oxide of iron, \&c. 5th, Barren magnesian soils may be rendered fertile by means of calcariferous substances, as rubbish, chalk, ashes, marl, \&c., provided the other conditions be fulfilled.Journal de Pharmacie de Janvier, 1839.

METEOROLOGICAL OBSERVATIONS FOR JANUARY, 1839.

Chiswick.-Jan. 1. Overcast. 2, 3. Cloudy and fine. 4. Rain: clear. 5. Clear and very fine. 6. Overcast : sleet : rain at night, with wind increasing to a hurricane. 7. Boisterous. 8. Clear : slight snow. 9, 10. Frosty. 11. Overcast : rain. 12. Very fine. 13. Cloudy and windy, with slight showers. 14. Rain. 15. Very clear. 16. Fine, but cold. 17, 18. Sharp frost : clear. 19. Stormy and wet: clear at night, with aurora borealis. 20. Fine: rain. 21. Rain. 22. Clear and cold. 23. Overcast and fine. 24. Hazy : fine. 25. Fine. 26. Fine : slight snow. 27. Cloudy and cold. 28. Frosty : slight snow at night. 29. Clear : snow. 30. Sharp frost : slightly overcast : stormy with snow : tempestuous at night. 31. Snowing.

Boston.-Jan. 1. Cloudy. 2. Stormy. 3. Fine: stormy night. 4. Cloudy : rain early A.m. 5. Fine. 6. Fine : snow p.M. 7. Stormy : blew a hurricane all day. 8. Stormy. 9, 10. Fine. 11. Cloudy : rain early A.m. : rain A.m. 12, 13. Cloudy. 14. Fine. 15. Stormy. 16, 17. Fine. 18. Fine : snow p.m. 19. Clondy : rain early A.m. : rain p.m. 20. Cloudy: rain early A.м. 21. Rain. 22. Fine: snow early A.m. 23, 24. Cloudy. 25. Fine : rain p.m. 26. Cloudy : snow early a.m. : snow p.м. ${ }^{2}$. Cloudy : rain a.m. 28. Cloudy. 29. Fine: rain and snow p.m. 30. Fine: rain p.m. 31. Cloudy : large fall of snow early A.m. : more snow in the day, with hail.

Applegarth Manse, Dumfries-shire.-Jan. 1. High wind and sharp showers. 2. Generally clear : occasional showers. 3. Very boisterous. 4. Calmed a little : stormy p.m. 5. Wind strong: snow. 6. Frost and snow : rain p.m. 7. Fearful storm : rain and sleet. 8. More calm : more snow. 9. Frost : snow lying three inches. 10. Thaw : snow melting. 11. Rain moderate : flood. 12. Moderate day: sunshine. 13. Frequent heavy showers. 14. Showery: aurora borealis. 15. Frosty after a boisterous night. 16. Clear frost: wind lulled. 17. Calm and frosty, and sunny. 18. Frost A.M. : rain at night. 19. Temperate: heavy flood. 20. Shower A.m.: still mild. 21. Frost A.m. : increasing p.m. 22. Clear frost : overcast p.m. 23. Frost again: slight thaw P.M. 24. Thaw : a few drops of rain. 25. Fine day, without frost. 26. Fine frosty day. 27. Calm and clear frost. 28. Frost : slight fall of snow. 29. Frost : storm of snow. 30. Frost; snow and high wind. S1. Frost : still snowing: nine inches deep.
fluence of magnesia on vegetation is analogous to that of lime. The following are the conclusions he arrives at: 1st, Native magnesia is not only not injurious to germination, vegetation, and fructification of plants, but on the contrary, appears to be favourable to these functions. 2nd, Magnesia, being soluble in an excess of carbonic acid, has on vegetation an action analogous to that of lime; and when a soil contains magnesia not sufficiently carbonated, this defect may be remedied by the addition of manure, which by its decomposition furnishes the necessary quantity of carbonic acid; the amelioration will be much more efficacious if the soil be frequently disturbed, as then the air will better exercise its action. 3rd, When lime and magnesia exist in arable lands, the former is absorbed in preference by the plants on account of its greater affinity for carbonic acid. 4th, In barren magnesian lands, it is not to the magnesia that the sterility must be attributed, but to the cohesive state of their parts, to the want of manure, of clay, or of other composts, to the large quantity of oxide of iron, \&c. 5th, Barren magnesian soils may be rendered fertile by means of calcariferous substances, as rubbish, chalk, ashes, marl, \&c., provided the other conditions be fulfilled.Journal de Pharmacie de Janvier, 1839.

METEOROLOGICAL OBSERVATIONS FOR JANUARY, 1839.

Chiswick.-Jan. 1. Overcast. 2, 3. Cloudy and fine. 4. Rain: clear. 5. Clear and very fine. 6. Overcast : sleet : rain at night, with wind increasing to a hurricane. 7. Boisterous. 8. Clear : slight snow. 9, 10. Frosty. 11. Overcast : rain. 12. Very fine. 13. Cloudy and windy, with slight showers. 14. Rain. 15. Very clear. 16. Fine, but cold. 17, 18. Sharp frost : clear. 19. Stormy and wet: clear at night, with aurora borealis. 20. Fine: rain. 21. Rain. 22. Clear and cold. 23. Overcast and fine. 24. Hazy : fine. 25. Fine. 26. Fine : slight snow. 27. Cloudy and cold. 28. Frosty : slight snow at night. 29. Clear : snow. 30. Sharp frost : slightly overcast : stormy with snow : tempestuous at night. 31. Snowing.

Boston.-Jan. 1. Cloudy. 2. Stormy. 3. Fine: stormy night. 4. Cloudy : rain early A.m. 5. Fine. 6. Fine : snow p.M. 7. Stormy : blew a hurricane all day. 8. Stormy. 9, 10. Fine. 11. Cloudy : rain early A.m. : rain A.m. 12, 13. Cloudy. 14. Fine. 15. Stormy. 16, 17. Fine. 18. Fine : snow p.m. 19. Clondy : rain early A.m. : rain p.m. 20. Cloudy: rain early A.м. 21. Rain. 22. Fine: snow early A.m. 23, 24. Cloudy. 25. Fine : rain p.m. 26. Cloudy : snow early a.m. : snow p.м. ${ }^{2}$. Cloudy : rain a.m. 28. Cloudy. 29. Fine: rain and snow p.m. 30. Fine: rain p.m. 31. Cloudy : large fall of snow early A.m. : more snow in the day, with hail.

Applegarth Manse, Dumfries-shire.-Jan. 1. High wind and sharp showers. 2. Generally clear : occasional showers. 3. Very boisterous. 4. Calmed a little : stormy p.m. 5. Wind strong: snow. 6. Frost and snow : rain p.m. 7. Fearful storm : rain and sleet. 8. More calm : more snow. 9. Frost : snow lying three inches. 10. Thaw : snow melting. 11. Rain moderate : flood. 12. Moderate day: sunshine. 13. Frequent heavy showers. 14. Showery: aurora borealis. 15. Frosty after a boisterous night. 16. Clear frost: wind lulled. 17. Calm and frosty, and sunny. 18. Frost A.M. : rain at night. 19. Temperate: heavy flood. 20. Shower A.m.: still mild. 21. Frost A.m. : increasing p.m. 22. Clear frost : overcast p.m. 23. Frost again: slight thaw P.M. 24. Thaw : a few drops of rain. 25. Fine day, without frost. 26. Fine frosty day. 27. Calm and clear frost. 28. Frost : slight fall of snow. 29. Frost : storm of snow. 30. Frost; snow and high wind. S1. Frost : still snowing: nine inches deep.
fluence of magnesia on vegetation is analogous to that of lime. The following are the conclusions he arrives at: 1st, Native magnesia is not only not injurious to germination, vegetation, and fructification of plants, but on the contrary, appears to be favourable to these functions. 2nd, Magnesia, being soluble in an excess of carbonic acid, has on vegetation an action analogous to that of lime; and when a soil contains magnesia not sufficiently carbonated, this defect may be remedied by the addition of manure, which by its decomposition furnishes the necessary quantity of carbonic acid; the amelioration will be much more efficacious if the soil be frequently disturbed, as then the air will better exercise its action. 3rd, When lime and magnesia exist in arable lands, the former is absorbed in preference by the plants on account of its greater affinity for carbonic acid. 4th, In barren magnesian lands, it is not to the magnesia that the sterility must be attributed, but to the cohesive state of their parts, to the want of manure, of clay, or of other composts, to the large quantity of oxide of iron, \&c. 5th, Barren magnesian soils may be rendered fertile by means of calcariferous substances, as rubbish, chalk, ashes, marl, \&c., provided the other conditions be fulfilled.Journal de Pharmacie de Janvier, 1839.

METEOROLOGICAL OBSERVATIONS FOR JANUARY, 1839.

Chiswick.-Jan. 1. Overcast. 2, 3. Cloudy and fine. 4. Rain: clear. 5. Clear and very fine. 6. Overcast : sleet : rain at night, with wind increasing to a hurricane. 7. Boisterous. 8. Clear : slight snow. 9, 10. Frosty. 11. Overcast : rain. 12. Very fine. 13. Cloudy and windy, with slight showers. 14. Rain. 15. Very clear. 16. Fine, but cold. 17, 18. Sharp frost : clear. 19. Stormy and wet: clear at night, with aurora borealis. 20. Fine: rain. 21. Rain. 22. Clear and cold. 23. Overcast and fine. 24. Hazy : fine. 25. Fine. 26. Fine : slight snow. 27. Cloudy and cold. 28. Frosty : slight snow at night. 29. Clear : snow. 30. Sharp frost : slightly overcast : stormy with snow : tempestuous at night. 31. Snowing.

Boston.-Jan. 1. Cloudy. 2. Stormy. 3. Fine: stormy night. 4. Cloudy : rain early A.m. 5. Fine. 6. Fine : snow p.M. 7. Stormy : blew a hurricane all day. 8. Stormy. 9, 10. Fine. 11. Cloudy : rain early A.m. : rain A.m. 12, 13. Cloudy. 14. Fine. 15. Stormy. 16, 17. Fine. 18. Fine : snow p.m. 19. Clondy : rain early A.m. : rain p.m. 20. Cloudy: rain early A.м. 21. Rain. 22. Fine: snow early A.m. 23, 24. Cloudy. 25. Fine : rain p.m. 26. Cloudy : snow early a.m. : snow p.м. ${ }^{2}$. Cloudy : rain a.m. 28. Cloudy. 29. Fine: rain and snow p.m. 30. Fine: rain p.m. 31. Cloudy : large fall of snow early A.m. : more snow in the day, with hail.

Applegarth Manse, Dumfries-shire.-Jan. 1. High wind and sharp showers. 2. Generally clear : occasional showers. 3. Very boisterous. 4. Calmed a little : stormy p.m. 5. Wind strong: snow. 6. Frost and snow : rain p.m. 7. Fearful storm : rain and sleet. 8. More calm : more snow. 9. Frost : snow lying three inches. 10. Thaw : snow melting. 11. Rain moderate : flood. 12. Moderate day: sunshine. 13. Frequent heavy showers. 14. Showery: aurora borealis. 15. Frosty after a boisterous night. 16. Clear frost: wind lulled. 17. Calm and frosty, and sunny. 18. Frost A.M. : rain at night. 19. Temperate: heavy flood. 20. Shower A.m.: still mild. 21. Frost A.m. : increasing p.m. 22. Clear frost : overcast p.m. 23. Frost again: slight thaw P.M. 24. Thaw : a few drops of rain. 25. Fine day, without frost. 26. Fine frosty day. 27. Calm and clear frost. 28. Frost : slight fall of snow. 29. Frost : storm of snow. 30. Frost; snow and high wind. S1. Frost : still snowing: nine inches deep.

Days of Month. 1839. Jan.	Barometer.						Thermometer.								Wind.				Rain.				Dewpoint. Lond.: Roy. Soc. 9 a.m.
	London: Roy. Soc. 9 a.m.	Chiswick.		Boston. 8 $\frac{1}{2}$ a.m.	Dumfries-shire.		London: Roy. Soc.			Chiswick.			$\begin{aligned} & \begin{array}{l} \text { Dumfries- } \\ \text { shire. } \end{array} \\ & \hline \text { 9a.m. } \mid \text { 9p.m } \end{aligned}$		London Roy.Soc. 9 a.m.		Bost.	Dum. fries_ shire.	London: Roy.Soc. 9 a.m.				
		Max.	Min.		9 a.m.	8ta p.m.	$9 \mathrm{a} . \mathrm{m}$	Max	in.	Max.	Min.												
1.	$30 \cdot 342$	$30 \cdot 391$	30.081	$29 \cdot 80$	$30 \cdot 00$	29.87	$40 \cdot 8$	41.4	$36 \cdot 2$ $40 \cdot 8$	50	43	43	44		s.		w.						
2.	30.050	$30 \cdot 102$	30.074	29.52	$29 \cdot 96$	29.95	$45 \cdot 4$	$49 \cdot 3$ $46 \cdot 2$	$40 \cdot 8$ $44 \cdot 2$	49	42	42	36	$36 \frac{1}{2}$ 45	w.	w.	Nw.	wbys.	...	\ldots	..	\ldots	35 38
3.	29.944	29.958 29.773	29.672 29.548	29.41	29.70 29.24	29.25 29.43	$45 \cdot 3$	$46 \cdot 2$ $47 \cdot 2$	$44 \cdot 2$ 41.9	49	40	41.5	44 37	45	sw.	sw.	calm	w.	. 050	$\stackrel{04}{ }$	\ldots	.	40
4.	29.530	29.773	29.548	29.	29.24.	29.43	$42 \cdot 0$	$47 \cdot 2$	$41 \cdot 9$	47	31	43	37	35	s.	w.	calm	wbys	-050	$\cdot 01$	-06		41
5.	$29 \cdot 682$	29.795	$29 \cdot 641$	29.42	29.41	29.30	$38 \cdot 4$	$39 \cdot 0$		44	32	34	34 20	32 34	S.	SW.		sw.	7			1-16	36
6.	29.718	29.735	$29 \cdot 147$	$29 \cdot 30$	29.55	28.99	$35 \cdot 7$	$39 \cdot 0$ 50.3	$34 \cdot 2$ $35 \cdot 0$	53	32	31	20	34 35	s.	SSE.	calm	sw.	-027	$\cdot 33$		116	31
© 7.	29.072	$29 \cdot 343$	29.096	$28 \cdot 42$	28.26	29.00	$44 \cdot 4$	$50 \cdot 3$ $46 \cdot 3$	$35 \cdot 0$ 34.8	47	32	45	28	[s.	W	w.	w	$\cdot 227$	-10			37
8	29.538	$29 \cdot 592$	29.526	29°	29.30	$29 \cdot 40$	$34 \cdot 7$	$46 \cdot 3$ 39.8	34.8 33.6	35	31	34	28	29 22	w.	NW	N.	w	-047				32
9.	$29 \cdot 716$	$30 \cdot 210$	29.735	29.36	29.78 30.08	$30 \cdot 10$	$34 \cdot 2$	$39 \cdot 8$ 35	$33 \cdot 6$ 29.3	36	21	27	20	42	NW.	NW.	w.	N.			...		31
10.	$30 \cdot 274$	$30 \cdot 304$	$30 \cdot 250$	$29 \cdot 88$	30.08	29.94	$32 \cdot 8$	$35 \cdot 8$ $43 \cdot 2$	29.3 $32 \cdot 6$	44	31	28	34	41	S.	S.	calm	s.					30
11.	$30 \cdot 150$	$30 \cdot 181$	$30 \cdot 130$	$29 \cdot 60$	$29 \cdot 80$	29.90	$42 \cdot 4$	$43 \cdot 2$	32	50	42	44.5	$43 \frac{1}{2}$	42	S.	sw.	sw.	sw.	-027	. 06	$\cdot 20$		35
12.	50.180	$30 \cdot 232$	$30 \cdot 202$	$29 \cdot 70$	30.09	30.03	$47 \cdot 7$	$50 \cdot 3$	42.7	51	39	43	40	38	NNW	w.	calm	sw.	-044		$\cdot 07$	0.80	41
13.	30.020 29.968	30.049 29.970	$29 \cdot 994$ 29.781	29.45	29.69 29.75	29.80 29.63	$49 \cdot 8$	50.3 51.8	$42 \cdot 7$ $43 \cdot 2$	52	41	50	46	41 34	sw var	w.	w.	w.		-01	,	-	41
14.	29.968	29.970	29.781	29.42	29.75	29.63	44.9	51.8	$43 \cdot 2$ $36 \cdot 0$	46	34	41	39	34	sw.	w.	calm	sw.	...	$\cdot 09$	\ldots		42
(3)15.	29.818	$30 \cdot 033$	29.850	29.27	$29 \cdot 68$	29.95	$36 \cdot 6$	47.7	36.0 33.0	44	31	36	36	33 $\frac{1}{2}$	w.	w.	w.	NNW.	$\cdot 127$				35
16.	29.944	30.024	29.951	29.55	$30 \cdot 00$	$30 \cdot 06$	$35 \cdot 3$	$43^{\circ} 2$	33.0	41	26	30	32	29	W.	w.	calm	Nw.		\ldots			32
17.	30.012	$30 \cdot 170$	30.045	$29 \cdot 65$	$30 \cdot 16$	30.20	$30 \cdot 7$	40.0	30.6 29.5	38	23	29.5	28	29	W N	NW.	Nw.	NnW.					28
18.	$30 \cdot 172$	$30 \cdot 204$	$30 \cdot 074$	$29 \cdot 80$	$30 \cdot 19$	29.80	$29 \cdot 7$	$38 \cdot 0$	29.5 29.7	44	27	27	21	37	W.	NW.	NW.	N	...				29
19.	29.572	29.949	$29 \cdot 392$	$29 \cdot 10$	29.39	29.68	$42 \cdot 9$	$44^{\circ} 0$ 47.8	$29 \cdot 7$ $35 \cdot 0$	50	29	$43 \cdot 5$	37	39	SE.	sw.	sw.	N.		$\cdot 13$	-08		35
20.	30.008	30.038	$29 \cdot 729$	29.55	29.82	29.71	$38 \cdot 6$	$47 \cdot 8$	$35 \cdot 0$	51	39	39	37	39	sw.	SW.	calm	sw.	-177	-16	-09		33
21.	$29 \cdot 658$	29.877	$29 \cdot 677$	$29 \cdot 80$	29.75	$30 \cdot 03$	$48 \cdot 7$	$49^{\circ} 4$	$38 \cdot 2$ 33.7	50	32	40	34	40	SW,	w.	calm	NE.	175	34	$\cdot 50$		38
D 22.	$30 \cdot 090$	$30 \cdot 445$	$30 \cdot 112$	29.73	$30 \cdot 34$	$30 \cdot 58$	34.7	$49^{\circ} 2$	$33 \cdot 7$ $34 \cdot 6$	37	33	32	$32 \frac{1}{2}$	32	N.	N.	calm	NE	-333	...	- 05	0.48	33
23.	30.530	30.551	30.494	$30 \cdot 15$	$30 \cdot 60$	$30 \cdot 55$	$36 \cdot 2$	37.4	34.6 33.7	42	30	34	29	36	W.	W.	N.	sw.	...	\ldots	...	04	33
24.	30.532	$30 \cdot 573$	30-308	30-12	30.53	$30 \cdot 40$	$36 \cdot 2$	$40 \cdot 4$	33.7 36.2	48	37	36	40	40	Sw.	W.	calm	N					32
25.	30.088	30.108	$29 \cdot 989$	$29 \cdot 65$	30.13	30.20	$43 \cdot 0$	43.8	$36 \cdot 2$ $34 \cdot 4$	49	32	43	39	$38 \frac{1}{2}$	w var.	w.	w.	N	...				37
26.	$30 \cdot 156$	$30 \cdot 388$	30.178	$29 \cdot 87$	$30 \cdot 50$	$30 \cdot 60$	$35 \cdot 3$	$47 \cdot 3$	34.4	38	30	35	33	32	N.	NE.	calm	NE	$\cdot 05$		32
27.	$30 \cdot 340$	$30 \cdot 374$	$30 \cdot 246$	30.05	$30 \cdot 58$	$30 \cdot 42$	$33 \cdot 3$	37.5	31-2	35	26	$36 \cdot 5$	31	26	NE.	NE.	calm	N			28
$\begin{array}{r}28 . \\ \hline 29\end{array}$	$30 \cdot 006$	30.064	$29 \cdot 682$	$29 \cdot 73$	30.03	$29 \cdot 74$	$32 \cdot 7$	$35 \cdot 6$	31.6 31.6	36	29	32	27	30	NW.	NE.	calm	NW.			-07		29
C29.	29.548	29.591	$29 \cdot 155$	$29 \cdot 22$	29.50	$29 \cdot 29$	$33 \cdot 2$	$37 \cdot 3$	31.6	39	17	29	27	22	w.	W.	calm	sw.					28
30. 31.	$29 \cdot 226$	$29 \cdot 284$	$29 \cdot 039$	$28 \cdot 92$	29.23	$29 \cdot 30$	27.7	36:0	23.7 25.5	34	27	24	26	25	SW.	w.	NW.	NW.	-194		-04		23
31.	29.150	$29 \cdot 729$	$29 \cdot 141$	28.83	29.58	29.97	$30 \cdot 5$	$32 \cdot 3$	25	37	22	29	31	30	w.	w.	NW	W			$\cdot 19$		23 23
Mean.	29.904	30.033	29.804	29.49	29.790	30.450	$38 \cdot 2$	$43 \cdot 3$	34.7	$43 \cdot 74$	$31 \cdot 64$	$36 \cdot 1$	33.	7						$1 \cdot 27$	40	$2 \cdot 44$	

Days of Month. 1839. Jan.	Barometer.						Thermometer.								Wind.				Rain.				Dewpoint. Lond.: Roy. Soc. 9 a.m.
	London: Roy. Soc. 9 a.m.	Chiswick.		Boston. 8 $\frac{1}{2}$ a.m.	Dumfries-shire.		London: Roy. Soc.			Chiswick.			$\begin{aligned} & \begin{array}{l} \text { Dumfries- } \\ \text { shire. } \end{array} \\ & \hline \text { 9a.m. } \mid \text { 9p.m } \end{aligned}$		London Roy.Soc. 9 a.m.		Bost.	Dum. fries_ shire.	London: Roy.Soc. 9 a.m.				
		Max.	Min.		9 a.m.	8ta p.m.	$9 \mathrm{a} . \mathrm{m}$	Max	in.	Max.	Min.												
1.	$30 \cdot 342$	$30 \cdot 391$	30.081	$29 \cdot 80$	$30 \cdot 00$	29.87	$40 \cdot 8$	41.4	$36 \cdot 2$ $40 \cdot 8$	50	43	43	44		s.		w.						
2.	30.050	$30 \cdot 102$	30.074	29.52	$29 \cdot 96$	29.95	$45 \cdot 4$	$49 \cdot 3$ $46 \cdot 2$	$40 \cdot 8$ $44 \cdot 2$	49	42	42	36	$36 \frac{1}{2}$ 45	w.	w.	Nw.	wbys.	...	\ldots	..	\ldots	35 38
3.	29.944	29.958 29.773	29.672 29.548	29.41	29.70 29.24	29.25 29.43	$45 \cdot 3$	$46 \cdot 2$ $47 \cdot 2$	$44 \cdot 2$ 41.9	49	40	41.5	44 37	45	sw.	sw.	calm	w.	. 050	$\stackrel{04}{ }$	\ldots	.	40
4.	29.530	29.773	29.548	29.	29.24.	29.43	$42 \cdot 0$	$47 \cdot 2$	$41 \cdot 9$	47	31	43	37	35	s.	w.	calm	wbys	-050	$\cdot 01$	-06		41
5.	$29 \cdot 682$	29.795	$29 \cdot 641$	29.42	29.41	29.30	$38 \cdot 4$	$39 \cdot 0$		44	32	34	34 20	32 34	S.	SW.		sw.	7			1-16	36
6.	29.718	29.735	$29 \cdot 147$	$29 \cdot 30$	29.55	28.99	$35 \cdot 7$	$39 \cdot 0$ 50.3	$34 \cdot 2$ $35 \cdot 0$	53	32	31	20	34 35	s.	SSE.	calm	sw.	-027	$\cdot 33$		116	31
© 7.	29.072	$29 \cdot 343$	29.096	$28 \cdot 42$	28.26	29.00	$44 \cdot 4$	$50 \cdot 3$ $46 \cdot 3$	$35 \cdot 0$ 34.8	47	32	45	28	[s.	W	w.	w	$\cdot 227$	-10			37
8	29.538	$29 \cdot 592$	29.526	29°	29.30	$29 \cdot 40$	$34 \cdot 7$	$46 \cdot 3$ 39.8	34.8 33.6	35	31	34	28	29 22	w.	NW	N.	w	-047				32
9.	$29 \cdot 716$	$30 \cdot 210$	29.735	29.36	29.78 30.08	$30 \cdot 10$	$34 \cdot 2$	$39 \cdot 8$ 35	$33 \cdot 6$ 29.3	36	21	27	20	42	NW.	NW.	w.	N.			...		31
10.	$30 \cdot 274$	$30 \cdot 304$	$30 \cdot 250$	$29 \cdot 88$	30.08	29.94	$32 \cdot 8$	$35 \cdot 8$ $43 \cdot 2$	29.3 $32 \cdot 6$	44	31	28	34	41	S.	S.	calm	s.					30
11.	$30 \cdot 150$	$30 \cdot 181$	$30 \cdot 130$	$29 \cdot 60$	$29 \cdot 80$	29.90	$42 \cdot 4$	$43 \cdot 2$	32	50	42	44.5	$43 \frac{1}{2}$	42	S.	sw.	sw.	sw.	-027	. 06	$\cdot 20$		35
12.	50.180	$30 \cdot 232$	$30 \cdot 202$	$29 \cdot 70$	30.09	30.03	$47 \cdot 7$	$50 \cdot 3$	42.7	51	39	43	40	38	NNW	w.	calm	sw.	-044		$\cdot 07$	0.80	41
13.	30.020 29.968	30.049 29.970	$29 \cdot 994$ 29.781	29.45	29.69 29.75	29.80 29.63	$49 \cdot 8$	50.3 51.8	$42 \cdot 7$ $43 \cdot 2$	52	41	50	46	41 34	sw var	w.	w.	w.		-01	,	-	41
14.	29.968	29.970	29.781	29.42	29.75	29.63	44.9	51.8	$43 \cdot 2$ $36 \cdot 0$	46	34	41	39	34	sw.	w.	calm	sw.	...	$\cdot 09$	\ldots		42
(3)15.	29.818	$30 \cdot 033$	29.850	29.27	$29 \cdot 68$	29.95	$36 \cdot 6$	47.7	36.0 33.0	44	31	36	36	33 $\frac{1}{2}$	w.	w.	w.	NNW.	$\cdot 127$				35
16.	29.944	30.024	29.951	29.55	$30 \cdot 00$	$30 \cdot 06$	$35 \cdot 3$	$43^{\circ} 2$	33.0	41	26	30	32	29	W.	w.	calm	Nw.		\ldots			32
17.	30.012	$30 \cdot 170$	30.045	$29 \cdot 65$	$30 \cdot 16$	30.20	$30 \cdot 7$	40.0	30.6 29.5	38	23	29.5	28	29	W N	NW.	Nw.	NnW.					28
18.	$30 \cdot 172$	$30 \cdot 204$	$30 \cdot 074$	$29 \cdot 80$	$30 \cdot 19$	29.80	$29 \cdot 7$	$38 \cdot 0$	29.5 29.7	44	27	27	21	37	W.	NW.	NW.	N	...				29
19.	29.572	29.949	$29 \cdot 392$	$29 \cdot 10$	29.39	29.68	$42 \cdot 9$	$44^{\circ} 0$ 47.8	$29 \cdot 7$ $35 \cdot 0$	50	29	$43 \cdot 5$	37	39	SE.	sw.	sw.	N.		$\cdot 13$	-08		35
20.	30.008	30.038	$29 \cdot 729$	29.55	29.82	29.71	$38 \cdot 6$	$47 \cdot 8$	$35 \cdot 0$	51	39	39	37	39	sw.	SW.	calm	sw.	-177	-16	-09		33
21.	$29 \cdot 658$	29.877	$29 \cdot 677$	$29 \cdot 80$	29.75	$30 \cdot 03$	$48 \cdot 7$	$49^{\circ} 4$	$38 \cdot 2$ 33.7	50	32	40	34	40	SW,	w.	calm	NE.	175	34	$\cdot 50$		38
D 22.	$30 \cdot 090$	$30 \cdot 445$	$30 \cdot 112$	29.73	$30 \cdot 34$	$30 \cdot 58$	34.7	$49^{\circ} 2$	$33 \cdot 7$ $34 \cdot 6$	37	33	32	$32 \frac{1}{2}$	32	N.	N.	calm	NE	-333	...	- 05	0.48	33
23.	30.530	30.551	30.494	$30 \cdot 15$	$30 \cdot 60$	$30 \cdot 55$	$36 \cdot 2$	37.4	34.6 33.7	42	30	34	29	36	W.	W.	N.	sw.	...	\ldots	...	04	33
24.	30.532	$30 \cdot 573$	30-308	30-12	30.53	$30 \cdot 40$	$36 \cdot 2$	$40 \cdot 4$	33.7 36.2	48	37	36	40	40	Sw.	W.	calm	N					32
25.	30.088	30.108	$29 \cdot 989$	$29 \cdot 65$	30.13	30.20	$43 \cdot 0$	43.8	$36 \cdot 2$ $34 \cdot 4$	49	32	43	39	$38 \frac{1}{2}$	w var.	w.	w.	N	...				37
26.	$30 \cdot 156$	$30 \cdot 388$	30.178	$29 \cdot 87$	$30 \cdot 50$	$30 \cdot 60$	$35 \cdot 3$	$47 \cdot 3$	34.4	38	30	35	33	32	N.	NE.	calm	NE	$\cdot 05$		32
27.	$30 \cdot 340$	$30 \cdot 374$	$30 \cdot 246$	30.05	$30 \cdot 58$	$30 \cdot 42$	$33 \cdot 3$	37.5	31-2	35	26	$36 \cdot 5$	31	26	NE.	NE.	calm	N			28
$\begin{array}{r}28 . \\ \hline 29\end{array}$	$30 \cdot 006$	30.064	$29 \cdot 682$	$29 \cdot 73$	30.03	$29 \cdot 74$	$32 \cdot 7$	$35 \cdot 6$	31.6 31.6	36	29	32	27	30	NW.	NE.	calm	NW.			-07		29
C29.	29.548	29.591	$29 \cdot 155$	$29 \cdot 22$	29.50	$29 \cdot 29$	$33 \cdot 2$	$37 \cdot 3$	31.6	39	17	29	27	22	w.	W.	calm	sw.					28
30. 31.	$29 \cdot 226$	$29 \cdot 284$	$29 \cdot 039$	$28 \cdot 92$	29.23	$29 \cdot 30$	27.7	36:0	23.7 25.5	34	27	24	26	25	SW.	w.	NW.	NW.	-194		-04		23
31.	29.150	$29 \cdot 729$	$29 \cdot 141$	28.83	29.58	29.97	$30 \cdot 5$	$32 \cdot 3$	25	37	22	29	31	30	w.	w.	NW	W			$\cdot 19$		23 23
Mean.	29.904	30.033	29.804	29.49	29.790	30.450	$38 \cdot 2$	$43 \cdot 3$	34.7	$43 \cdot 74$	$31 \cdot 64$	$36 \cdot 1$	33.	7						$1 \cdot 27$	40	$2 \cdot 44$	

Days of Month. 1839. Jan.	Barometer.						Thermometer.								Wind.				Rain.				Dewpoint. Lond.: Roy. Soc. 9 a.m.
	London: Roy. Soc. 9 a.m.	Chiswick.		Boston. 8 $\frac{1}{2}$ a.m.	Dumfries-shire.		London: Roy. Soc.			Chiswick.			$\begin{aligned} & \begin{array}{l} \text { Dumfries- } \\ \text { shire. } \end{array} \\ & \hline \text { 9a.m. } \mid \text { 9p.m } \end{aligned}$		London Roy.Soc. 9 a.m.		Bost.	Dum. fries_ shire.	London: Roy.Soc. 9 a.m.				
		Max.	Min.		9 a.m.	8ta p.m.	$9 \mathrm{a} . \mathrm{m}$	Max	in.	Max.	Min.												
1.	$30 \cdot 342$	$30 \cdot 391$	30.081	$29 \cdot 80$	$30 \cdot 00$	29.87	$40 \cdot 8$	41.4	$36 \cdot 2$ $40 \cdot 8$	50	43	43	44		s.		w.						
2.	30.050	$30 \cdot 102$	30.074	29.52	$29 \cdot 96$	29.95	$45 \cdot 4$	$49 \cdot 3$ $46 \cdot 2$	$40 \cdot 8$ $44 \cdot 2$	49	42	42	36	$36 \frac{1}{2}$ 45	w.	w.	Nw.	wbys.	...	\ldots	..	\ldots	35 38
3.	29.944	29.958 29.773	29.672 29.548	29.41	29.70 29.24	29.25 29.43	$45 \cdot 3$	$46 \cdot 2$ $47 \cdot 2$	$44 \cdot 2$ 41.9	49	40	41.5	44 37	45	sw.	sw.	calm	w.	. 050	$\stackrel{04}{ }$	\ldots	.	40
4.	29.530	29.773	29.548	29.	29.24.	29.43	$42 \cdot 0$	$47 \cdot 2$	$41 \cdot 9$	47	31	43	37	35	s.	w.	calm	wbys	-050	$\cdot 01$	-06		41
5.	$29 \cdot 682$	29.795	$29 \cdot 641$	29.42	29.41	29.30	$38 \cdot 4$	$39 \cdot 0$		44	32	34	34 20	32 34	S.	SW.		sw.	7			1-16	36
6.	29.718	29.735	$29 \cdot 147$	$29 \cdot 30$	29.55	28.99	$35 \cdot 7$	$39 \cdot 0$ 50.3	$34 \cdot 2$ $35 \cdot 0$	53	32	31	20	34 35	s.	SSE.	calm	sw.	-027	$\cdot 33$		116	31
© 7.	29.072	$29 \cdot 343$	29.096	$28 \cdot 42$	28.26	29.00	$44 \cdot 4$	$50 \cdot 3$ $46 \cdot 3$	$35 \cdot 0$ 34.8	47	32	45	28	[s.	W	w.	w	$\cdot 227$	-10			37
8	29.538	$29 \cdot 592$	29.526	29°	29.30	$29 \cdot 40$	$34 \cdot 7$	$46 \cdot 3$ 39.8	34.8 33.6	35	31	34	28	29 22	w.	NW	N.	w	-047				32
9.	$29 \cdot 716$	$30 \cdot 210$	29.735	29.36	29.78 30.08	$30 \cdot 10$	$34 \cdot 2$	$39 \cdot 8$ 35	$33 \cdot 6$ 29.3	36	21	27	20	42	NW.	NW.	w.	N.			...		31
10.	$30 \cdot 274$	$30 \cdot 304$	$30 \cdot 250$	$29 \cdot 88$	30.08	29.94	$32 \cdot 8$	$35 \cdot 8$ $43 \cdot 2$	29.3 $32 \cdot 6$	44	31	28	34	41	S.	S.	calm	s.					30
11.	$30 \cdot 150$	$30 \cdot 181$	$30 \cdot 130$	$29 \cdot 60$	$29 \cdot 80$	29.90	$42 \cdot 4$	$43 \cdot 2$	32	50	42	44.5	$43 \frac{1}{2}$	42	S.	sw.	sw.	sw.	-027	. 06	$\cdot 20$		35
12.	50.180	$30 \cdot 232$	$30 \cdot 202$	$29 \cdot 70$	30.09	30.03	$47 \cdot 7$	$50 \cdot 3$	42.7	51	39	43	40	38	NNW	w.	calm	sw.	-044		$\cdot 07$	0.80	41
13.	30.020 29.968	30.049 29.970	$29 \cdot 994$ 29.781	29.45	29.69 29.75	29.80 29.63	$49 \cdot 8$	50.3 51.8	$42 \cdot 7$ $43 \cdot 2$	52	41	50	46	41 34	sw var	w.	w.	w.		-01	,	-	41
14.	29.968	29.970	29.781	29.42	29.75	29.63	44.9	51.8	$43 \cdot 2$ $36 \cdot 0$	46	34	41	39	34	sw.	w.	calm	sw.	...	$\cdot 09$	\ldots		42
(3)15.	29.818	$30 \cdot 033$	29.850	29.27	$29 \cdot 68$	29.95	$36 \cdot 6$	47.7	36.0 33.0	44	31	36	36	33 $\frac{1}{2}$	w.	w.	w.	NNW.	$\cdot 127$				35
16.	29.944	30.024	29.951	29.55	$30 \cdot 00$	$30 \cdot 06$	$35 \cdot 3$	$43^{\circ} 2$	33.0	41	26	30	32	29	W.	w.	calm	Nw.		\ldots			32
17.	30.012	$30 \cdot 170$	30.045	$29 \cdot 65$	$30 \cdot 16$	30.20	$30 \cdot 7$	40.0	30.6 29.5	38	23	29.5	28	29	W N	NW.	Nw.	NnW.					28
18.	$30 \cdot 172$	$30 \cdot 204$	$30 \cdot 074$	$29 \cdot 80$	$30 \cdot 19$	29.80	$29 \cdot 7$	$38 \cdot 0$	29.5 29.7	44	27	27	21	37	W.	NW.	NW.	N	...				29
19.	29.572	29.949	$29 \cdot 392$	$29 \cdot 10$	29.39	29.68	$42 \cdot 9$	$44^{\circ} 0$ 47.8	$29 \cdot 7$ $35 \cdot 0$	50	29	$43 \cdot 5$	37	39	SE.	sw.	sw.	N.		$\cdot 13$	-08		35
20.	30.008	30.038	$29 \cdot 729$	29.55	29.82	29.71	$38 \cdot 6$	$47 \cdot 8$	$35 \cdot 0$	51	39	39	37	39	sw.	SW.	calm	sw.	-177	-16	-09		33
21.	$29 \cdot 658$	29.877	$29 \cdot 677$	$29 \cdot 80$	29.75	$30 \cdot 03$	$48 \cdot 7$	$49^{\circ} 4$	$38 \cdot 2$ 33.7	50	32	40	34	40	SW,	w.	calm	NE.	175	34	$\cdot 50$		38
D 22.	$30 \cdot 090$	$30 \cdot 445$	$30 \cdot 112$	29.73	$30 \cdot 34$	$30 \cdot 58$	34.7	$49^{\circ} 2$	$33 \cdot 7$ $34 \cdot 6$	37	33	32	$32 \frac{1}{2}$	32	N.	N.	calm	NE	-333	...	- 05	0.48	33
23.	30.530	30.551	30.494	$30 \cdot 15$	$30 \cdot 60$	$30 \cdot 55$	$36 \cdot 2$	37.4	34.6 33.7	42	30	34	29	36	W.	W.	N.	sw.	...	\ldots	...	04	33
24.	30.532	$30 \cdot 573$	30-308	30-12	30.53	$30 \cdot 40$	$36 \cdot 2$	$40 \cdot 4$	33.7 36.2	48	37	36	40	40	Sw.	W.	calm	N					32
25.	30.088	30.108	$29 \cdot 989$	$29 \cdot 65$	30.13	30.20	$43 \cdot 0$	43.8	$36 \cdot 2$ $34 \cdot 4$	49	32	43	39	$38 \frac{1}{2}$	w var.	w.	w.	N	...				37
26.	$30 \cdot 156$	$30 \cdot 388$	30.178	$29 \cdot 87$	$30 \cdot 50$	$30 \cdot 60$	$35 \cdot 3$	$47 \cdot 3$	34.4	38	30	35	33	32	N.	NE.	calm	NE	$\cdot 05$		32
27.	$30 \cdot 340$	$30 \cdot 374$	$30 \cdot 246$	30.05	$30 \cdot 58$	$30 \cdot 42$	$33 \cdot 3$	37.5	31-2	35	26	$36 \cdot 5$	31	26	NE.	NE.	calm	N			28
$\begin{array}{r}28 . \\ \hline 29\end{array}$	$30 \cdot 006$	30.064	$29 \cdot 682$	$29 \cdot 73$	30.03	$29 \cdot 74$	$32 \cdot 7$	$35 \cdot 6$	31.6 31.6	36	29	32	27	30	NW.	NE.	calm	NW.			-07		29
C29.	29.548	29.591	$29 \cdot 155$	$29 \cdot 22$	29.50	$29 \cdot 29$	$33 \cdot 2$	$37 \cdot 3$	31.6	39	17	29	27	22	w.	W.	calm	sw.					28
30. 31.	$29 \cdot 226$	$29 \cdot 284$	$29 \cdot 039$	$28 \cdot 92$	29.23	$29 \cdot 30$	27.7	36:0	23.7 25.5	34	27	24	26	25	SW.	w.	NW.	NW.	-194		-04		23
31.	29.150	$29 \cdot 729$	$29 \cdot 141$	28.83	29.58	29.97	$30 \cdot 5$	$32 \cdot 3$	25	37	22	29	31	30	w.	w.	NW	W			$\cdot 19$		23 23
Mean.	29.904	30.033	29.804	29.49	29.790	30.450	$38 \cdot 2$	$43 \cdot 3$	34.7	$43 \cdot 74$	$31 \cdot 64$	$36 \cdot 1$	33.	7						$1 \cdot 27$	40	$2 \cdot 44$	

Days of Month. 1839. Jan.	Barometer.						Thermometer.								Wind.				Rain.				Dewpoint. Lond.: Roy. Soc. 9 a.m.
	London: Roy. Soc. 9 a.m.	Chiswick.		Boston. 8 $\frac{1}{2}$ a.m.	Dumfries-shire.		London: Roy. Soc.			Chiswick.			$\begin{aligned} & \begin{array}{l} \text { Dumfries- } \\ \text { shire. } \end{array} \\ & \hline \text { 9a.m. } \mid \text { 9p.m } \end{aligned}$		London Roy.Soc. 9 a.m.		Bost.	Dum. fries_ shire.	London: Roy.Soc. 9 a.m.				
		Max.	Min.		9 a.m.	8ta p.m.	$9 \mathrm{a} . \mathrm{m}$	Max	in.	Max.	Min.												
1.	$30 \cdot 342$	$30 \cdot 391$	30.081	$29 \cdot 80$	$30 \cdot 00$	29.87	$40 \cdot 8$	41.4	$36 \cdot 2$ $40 \cdot 8$	50	43	43	44		s.		w.						
2.	30.050	$30 \cdot 102$	30.074	29.52	$29 \cdot 96$	29.95	$45 \cdot 4$	$49 \cdot 3$ $46 \cdot 2$	$40 \cdot 8$ $44 \cdot 2$	49	42	42	36	$36 \frac{1}{2}$ 45	w.	w.	Nw.	wbys.	...	\ldots	..	\ldots	35 38
3.	29.944	29.958 29.773	29.672 29.548	29.41	29.70 29.24	29.25 29.43	$45 \cdot 3$	$46 \cdot 2$ $47 \cdot 2$	$44 \cdot 2$ 41.9	49	40	41.5	44 37	45	sw.	sw.	calm	w.	. 050	$\stackrel{04}{ }$	\ldots	.	40
4.	29.530	29.773	29.548	29.	29.24.	29.43	$42 \cdot 0$	$47 \cdot 2$	$41 \cdot 9$	47	31	43	37	35	s.	w.	calm	wbys	-050	$\cdot 01$	-06		41
5.	$29 \cdot 682$	29.795	$29 \cdot 641$	29.42	29.41	29.30	$38 \cdot 4$	$39 \cdot 0$		44	32	34	34 20	32 34	S.	SW.		sw.	7			1-16	36
6.	29.718	29.735	$29 \cdot 147$	$29 \cdot 30$	29.55	28.99	$35 \cdot 7$	$39 \cdot 0$ 50.3	$34 \cdot 2$ $35 \cdot 0$	53	32	31	20	34 35	s.	SSE.	calm	sw.	-027	$\cdot 33$		116	31
© 7.	29.072	$29 \cdot 343$	29.096	$28 \cdot 42$	28.26	29.00	$44 \cdot 4$	$50 \cdot 3$ $46 \cdot 3$	$35 \cdot 0$ 34.8	47	32	45	28	[s.	W	w.	w	$\cdot 227$	-10			37
8	29.538	$29 \cdot 592$	29.526	29°	29.30	$29 \cdot 40$	$34 \cdot 7$	$46 \cdot 3$ 39.8	34.8 33.6	35	31	34	28	29 22	w.	NW	N.	w	-047				32
9.	$29 \cdot 716$	$30 \cdot 210$	29.735	29.36	29.78 30.08	$30 \cdot 10$	$34 \cdot 2$	$39 \cdot 8$ 35	$33 \cdot 6$ 29.3	36	21	27	20	42	NW.	NW.	w.	N.			...		31
10.	$30 \cdot 274$	$30 \cdot 304$	$30 \cdot 250$	$29 \cdot 88$	30.08	29.94	$32 \cdot 8$	$35 \cdot 8$ $43 \cdot 2$	29.3 $32 \cdot 6$	44	31	28	34	41	S.	S.	calm	s.					30
11.	$30 \cdot 150$	$30 \cdot 181$	$30 \cdot 130$	$29 \cdot 60$	$29 \cdot 80$	29.90	$42 \cdot 4$	$43 \cdot 2$	32	50	42	44.5	$43 \frac{1}{2}$	42	S.	sw.	sw.	sw.	-027	. 06	$\cdot 20$		35
12.	50.180	$30 \cdot 232$	$30 \cdot 202$	$29 \cdot 70$	30.09	30.03	$47 \cdot 7$	$50 \cdot 3$	42.7	51	39	43	40	38	NNW	w.	calm	sw.	-044		$\cdot 07$	0.80	41
13.	30.020 29.968	30.049 29.970	$29 \cdot 994$ 29.781	29.45	29.69 29.75	29.80 29.63	$49 \cdot 8$	50.3 51.8	$42 \cdot 7$ $43 \cdot 2$	52	41	50	46	41 34	sw var	w.	w.	w.		-01	,	-	41
14.	29.968	29.970	29.781	29.42	29.75	29.63	44.9	51.8	$43 \cdot 2$ $36 \cdot 0$	46	34	41	39	34	sw.	w.	calm	sw.	...	$\cdot 09$	\ldots		42
(3)15.	29.818	$30 \cdot 033$	29.850	29.27	$29 \cdot 68$	29.95	$36 \cdot 6$	47.7	36.0 33.0	44	31	36	36	33 $\frac{1}{2}$	w.	w.	w.	NNW.	$\cdot 127$				35
16.	29.944	30.024	29.951	29.55	$30 \cdot 00$	$30 \cdot 06$	$35 \cdot 3$	$43^{\circ} 2$	33.0	41	26	30	32	29	W.	w.	calm	Nw.		\ldots			32
17.	30.012	$30 \cdot 170$	30.045	$29 \cdot 65$	$30 \cdot 16$	30.20	$30 \cdot 7$	40.0	30.6 29.5	38	23	29.5	28	29	W N	NW.	Nw.	NnW.					28
18.	$30 \cdot 172$	$30 \cdot 204$	$30 \cdot 074$	$29 \cdot 80$	$30 \cdot 19$	29.80	$29 \cdot 7$	$38 \cdot 0$	29.5 29.7	44	27	27	21	37	W.	NW.	NW.	N	...				29
19.	29.572	29.949	$29 \cdot 392$	$29 \cdot 10$	29.39	29.68	$42 \cdot 9$	$44^{\circ} 0$ 47.8	$29 \cdot 7$ $35 \cdot 0$	50	29	$43 \cdot 5$	37	39	SE.	sw.	sw.	N.		$\cdot 13$	-08		35
20.	30.008	30.038	$29 \cdot 729$	29.55	29.82	29.71	$38 \cdot 6$	$47 \cdot 8$	$35 \cdot 0$	51	39	39	37	39	sw.	SW.	calm	sw.	-177	-16	-09		33
21.	$29 \cdot 658$	29.877	$29 \cdot 677$	$29 \cdot 80$	29.75	$30 \cdot 03$	$48 \cdot 7$	$49^{\circ} 4$	$38 \cdot 2$ 33.7	50	32	40	34	40	SW,	w.	calm	NE.	175	34	$\cdot 50$		38
D 22.	$30 \cdot 090$	$30 \cdot 445$	$30 \cdot 112$	29.73	$30 \cdot 34$	$30 \cdot 58$	34.7	$49^{\circ} 2$	$33 \cdot 7$ $34 \cdot 6$	37	33	32	$32 \frac{1}{2}$	32	N.	N.	calm	NE	-333	...	- 05	0.48	33
23.	30.530	30.551	30.494	$30 \cdot 15$	$30 \cdot 60$	$30 \cdot 55$	$36 \cdot 2$	37.4	34.6 33.7	42	30	34	29	36	W.	W.	N.	sw.	...	\ldots	...	04	33
24.	30.532	$30 \cdot 573$	30-308	30-12	30.53	$30 \cdot 40$	$36 \cdot 2$	$40 \cdot 4$	33.7 36.2	48	37	36	40	40	Sw.	W.	calm	N					32
25.	30.088	30.108	$29 \cdot 989$	$29 \cdot 65$	30.13	30.20	$43 \cdot 0$	43.8	$36 \cdot 2$ $34 \cdot 4$	49	32	43	39	$38 \frac{1}{2}$	w var.	w.	w.	N	...				37
26.	$30 \cdot 156$	$30 \cdot 388$	30.178	$29 \cdot 87$	$30 \cdot 50$	$30 \cdot 60$	$35 \cdot 3$	$47 \cdot 3$	34.4	38	30	35	33	32	N.	NE.	calm	NE	$\cdot 05$		32
27.	$30 \cdot 340$	$30 \cdot 374$	$30 \cdot 246$	30.05	$30 \cdot 58$	$30 \cdot 42$	$33 \cdot 3$	37.5	31-2	35	26	$36 \cdot 5$	31	26	NE.	NE.	calm	N			28
$\begin{array}{r}28 . \\ \hline 29\end{array}$	$30 \cdot 006$	30.064	$29 \cdot 682$	$29 \cdot 73$	30.03	$29 \cdot 74$	$32 \cdot 7$	$35 \cdot 6$	31.6 31.6	36	29	32	27	30	NW.	NE.	calm	NW.			-07		29
C29.	29.548	29.591	$29 \cdot 155$	$29 \cdot 22$	29.50	$29 \cdot 29$	$33 \cdot 2$	$37 \cdot 3$	31.6	39	17	29	27	22	w.	W.	calm	sw.					28
30. 31.	$29 \cdot 226$	$29 \cdot 284$	$29 \cdot 039$	$28 \cdot 92$	29.23	$29 \cdot 30$	27.7	36:0	23.7 25.5	34	27	24	26	25	SW.	w.	NW.	NW.	-194		-04		23
31.	29.150	$29 \cdot 729$	$29 \cdot 141$	28.83	29.58	29.97	$30 \cdot 5$	$32 \cdot 3$	25	37	22	29	31	30	w.	w.	NW	W			$\cdot 19$		23 23
Mean.	29.904	30.033	29.804	29.49	29.790	30.450	$38 \cdot 2$	$43 \cdot 3$	34.7	$43 \cdot 74$	$31 \cdot 64$	$36 \cdot 1$	33.	7						$1 \cdot 27$	40	$2 \cdot 44$	

[^0]: on the influence of native magnesia on the germination, vegetation, and fructification of vegetables. by angelo abBene.

[^1]: on the influence of native magnesia on the germination, vegetation, and fructification of vegetables. by angelo abBene.

[^2]: on the influence of native magnesia on the germination, vegetation, and fructification of vegetables. by angelo abBene.

[^3]: on the influence of native magnesia on the germination, vegetation, and fructification of vegetables. by angelo abBene.

